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Biochemical reaction networks in living cells usually involve reversible covalent modification of signaling
molecules, such as protein phosphorylation. Under conditions of small molecule numbers, as is frequently the
case in living cells, mass-action theory fails to describe the dynamics of such systems. Instead, the biochemical
reactions must be treated as stochastic processes that intrinsically generate concentration fluctuations of the
chemicals. We investigate the stochastic reaction kinetics of covalent modification cycles �CMCs� by analytical
modeling and numerically exact Monte Carlo simulation of the temporally fluctuating concentration. Depend-
ing on the parameter regime, we find for the probability density of the concentration qualitatively distinct
classes of distribution functions including power-law distributions with a fractional and tunable exponent.
These findings challenge the traditional view of biochemical control networks as deterministic computational
systems and suggest that CMCs in cells can function as versatile and tunable noise generators.

DOI: 10.1103/PhysRevE.80.021915 PACS number�s�: 87.18.Vf, 87.10.Mn, 82.20.Fd, 05.10.Gg

I. INTRODUCTION

Living cells transduce chemical signals from the environ-
ment via trans-membrane receptors to their interior. The ac-
tivated receptors trigger chains of chemical reactions along
the so-called signaling pathways, which can, for example,
lead to the expression of selected genes in response to the
external stimulus. Complex reaction networks arise when
several linear pathways are cross-linked by multiple bio-
chemical interactions. Such signal transduction networks are
traditionally thought of as deterministic “computers,” in
which information is coded by the relative concentration of
biochemicals. This study challenges this view and suggests
that stochastic concentration fluctuations are the primary
mode of operation for most intracellular signaling cascades.

It is well known that the numbers of receptors and signal-
ing molecules fluctuate as a function of time and from cell to
cell �1�. The role of these fluctuations, often regarded as
noise, is still poorly understood. How can cells properly react
to external stimuli when the signals have to pass through
noisy channels? Is the degree of noise actively suppressed
for certain key signaling proteins? Or is the present under-
standing of intracellular control, based on mass-action
theory, overly simplified?

Using covalent modification cycles �CMCs� as a simple
model system, we show that the magnitude of concentration
fluctuations, relative to the mean value, can indeed be enor-
mous. We demonstrate that CMCs can be viewed as versatile
and tunable noise generators. Depending on the system pa-
rameters, qualitatively different classes of probability density
functions �PDFs� of concentration fluctuations emerge, in-
cluding extremely broad and asymmetric distributions with
fractional power-law tails. CMCs are a very common motif
in cellular reaction networks �2–8�. The typical structure of a
CMC is shown in Fig. 1.

In such systems, a substrate protein is found in two dif-
ferent chemical states: an inactive form X0 and an activated

form X �often a phosphorylized version of X0�. The conver-
sion of the two forms into each other is provided by an
activating enzyme A �often a kinase� and the deactivation by
another enzyme D �often a phosphatase�. In the activation
process, the catalyst A first binds its substrate X0. The result-
ing enzyme-substrate complex AX0 may decay back into the
original components. In the case of a successful conversion,
however, a product molecule X is released and the enzyme A
is recovered for further use. The deactivation process is
analogous.

The CMC can be functionally decomposed into two en-
zymatic conversion processes. According to Michaelis-
Menten kinetics �compare Appendix, Sec. 1�, the conversion
rate is, in the linear regime, limited by the amount of avail-
able substrate. For very high substrate concentration, how-
ever, the conversion rate approaches a maximum value, de-
termined only by the amount and efficiency of the enzyme
�saturation regime�.

As demonstrated in a classical paper by Goldbeter et al.
�9�, the combination of the two enzymatic conversion reac-
tions can lead to interesting behavior if they operate within
the saturated regime. In this case, the equilibrium ratio
�X� / �X0� as a function of the ratio of enzyme levels �A� / �D�
develops a sigmoidal shape with a sharp transition point
�zero-order ultrasensitivity�. In the context of biochemical
signal networks, CMCs are for this reason understood as
switches.
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FIG. 1. �Color online� Schematic of a CMC. Substrate X0 is
activated by enzyme A into the modified form X and deactivated by
enzyme D. Each shaded submodule denotes an enzymatic conver-
sion reaction �unbinding reactions not shown�.
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The Goldbeter-Koshland theory is based on deterministic
�mass-action� rate equations and thus disregards fluctuations
entirely. Molecular reactions, however, inevitably generate
intrinsic noise due to their discrete and stochastic nature.
Even under so-called steady-state conditions, the momentary
rates at which reactions proceed are fluctuating around the
mean values described by mass-action theory. The corre-
sponding temporal fluctuations of molecule numbers are par-
ticularly important in living cells, where the average mol-
ecule numbers of many chemical species are low. For this
reason, quantitative models of biochemical concentration
fluctuations are developed for different types of reaction net-
works �see, for example, Refs. �10–12��.

Due to their ubiquity in living cells, CMCs are of particu-
lar interest. A detailed theoretical investigation of the intrin-
sic fluctuations of CMCs, their robustness and tunability, was
provided by Levine et al. �13�, who directly solved the mas-
ter equation for the probability distribution of the number of
activated signal molecules. The authors further considered
the information transmission properties of the system in the
presence of the intrinsic fluctuations by applying a pulselike
increase of the kinase activity as an input signal. They find
that the noisy CMC can transmit the signal reliably if tuned
to an optimal parameter range.

In this paper, we focus on the shape of the stationary
probability distributions produced by CMCs in various pa-
rameter regimes. The reaction kinetics of this system is simu-
lated using the exact Gillespie algorithm. This simulation
yields directly the temporal concentration fluctuations x�t� of
the activated signaling molecule.

We find an unexpected variety of distribution functions
P�x�, including Gaussian, exponential, flat, as well as power-
law distributions with a fractional and tunable exponent. The
type of the emerging distribution function depends on param-
eters such as the total amount of available enzyme and sub-
strate molecules in their different forms and on reaction-rate
coefficients. We speculate that living cells could switch be-
tween distinct statistical distributions, on short-time scales,
by controlling the overall expression levels of these mol-
ecules. In many cases, moreover, the enzymes of a CMC are
themselves activated and deactivated by another cycle. In
this way, the effective conversion efficiency of an enzyme
can be tuned over a wide range with only minimal changes
of protein expression levels. This tremendous flexibility of
CMCs with respect to their statistical properties suggests a
more complex picture of cellular signal processing which is
based on the active generation and precise shaping of con-
centration fluctuations of signaling molecules.

In our paper, we develop analytical approximations of the
concentration fluctuations within CMCs based on stochastic
differential equations and explicit stationary solutions of the
corresponding Fokker-Planck equations. The analytical re-
sults are in excellent agreement with the simulations and
provide a quantitative understanding of the major statistical
features.

II. MODELS AND METHODS

A. Model parameters and assumptions

Let the reactions take place in a container of volume V so
that the concentration �S� of a substance corresponds to a

molecule number s= �S�V. We also assume that the reactor is
“well stirred,” i.e., diffusion of chemical species is infinitely
fast and so spatial effects are disregarded.

We study a CMC of the form

X0 + A�
u1

b1

AX0→
c1

X + A ,

X + D�
u2

b2

DX→
c2

X0 + D . �1�

The substrate X0 is converted into its activated form X by
enzyme A. The corresponding deactivation is performed by
enzyme D. We thus have to consider six temporally variable
molecule numbers, x0 ,x ,a ,d ,ax0 ,dx, dynamically coupled
by six chemical reactions. Within each enzymatic conversion
unit, the three reaction coefficients are denoted as b �bind-
ing�, u �unbinding�, and c �conversion�. Index 1 is used for
the activation and index 2 for the deactivation process. Ad-
ditional parameters are the total amount of the substrate in its
various forms, xt=x0+ax0+x+dx, as well as the total
amounts of enzymes at=a+ax0 and dt=d+dx.

B. Analytical and numerical methods

Analytical approximations for chemical reaction networks
can be obtained by deriving Langevin equations for the tem-
poral changes of the molecule numbers. These stochastic dif-
ferential equations contain, besides a deterministic term that
corresponds to the mass-action change rates, a stochastic
term that accounts for the fluctuations. To make use of the
standard methods of stochastic differential calculus, the fluc-
tuation term is approximated by a Gaussian, white-noise ran-
dom process. This is a critical approximation, since the ef-
fective “strength” of the white-noise process has to be
chosen with care in order to reflect the true process as faith-
fully as possible. In the case of chemical Langevin equations,
the true process consists of a series of delta peaks arriving
with �inhomogeneous� Poisson statistics. It is therefore pos-
sible to derive the proper strength of the white-noise process
from the fundamental properties of Poisson statistics. This
theory of chemical Langevin equations has been developed,
for the general case, by Gillespie �14�. In this paper, we take
a similar approach, suitable for our specific reaction network.

In order to test our analytical approximations, we shall
compare the results to a numerically exact Monte Carlo
simulation of the reaction dynamics by implementing the
Gillespie algorithm �15�. In this algorithm, the molecule
numbers of each species are integers which change abruptly
due to elementary reaction events. Statistically, these el-
ementary reactions are Poisson processes with average event
rates depending on the momentary molecule numbers ac-
cording to the chemical rate equations. Therefore, the intrin-
sic stochastic fluctuations of the reactions are automatically
included in a realistic way.

C. Coarse graining of the enzymatic conversion

We first focus on a single enzymatic conversion reaction,
for example, the activation process. Our goal is to describe it
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in a coarse-grained approximation as a single functional unit
with effective statistical properties. Two of these effective
units will later be combined �as shown in Fig. 1� to derive a
stochastic differential equation for the fluctuating number
x�t� of X molecules.

We assume for a moment that the number x0 of substrate
molecules X0 is constant �ideal reservoir�. We are then inter-

ested in the average production rate R̄act�x0� of the activated
protein X and in the temporal fluctuations �Ract�x0 , t� of this
rate. This, in turn, will enable us to write a stochastic rate

equation of the production process in the form ẋ= R̄act�x0�
+�Ract�x0 , t�.

As for the average rates, we solve the mass-action rate
equations in the stationary state. This follows standard
Michaelis-Menten theory, but for completeness, we include
the derivation in Appendix, Sec. 1. The result is

R̄act�x0� = vm
x0

x0 + km
, �2�

with the maximum conversion velocity

vm = cat �3�

and the Michaelis constant

km =
c + u

b
. �4�

Enzymes are sometimes likened to nanomachines, which
convert their substrates in a predictable, goal-oriented pro-
cess. Yet, many enzymes in biological systems are working
in a much more imperfect way. Once the enzyme has bound
to its substrate, the enzyme-substrate complex often dissoci-
ates back into the original two molecules. Each individual
enzyme molecule will go through a series of futile binding-
dissociation cycles before it actually converts a substrate into
the modified form. In the chemical reaction equation �1�, this
is accounted for by the back reaction with rates uj �with j
=1,2�. The conversion efficiency of an enzyme can be quan-
tified by the fraction of binding events that lead to a success-
ful production and release of the modified substrate mol-
ecule. This fraction, in turn, depends on the relative
magnitude of the rates uj and cj. We can define two limiting
regimes. The case uj �cj corresponds to extremely ineffi-
cient enzymes. In the diagram of Fig. 1, almost all activity of
the reaction system will then take place within the shaded
submodules. The fluxes in and out of these submodules are
so weak that within the submodules, a chemical equilibrium
is established between the bound and dissociated enzyme-
substrate complexes. We therefore call this case the “pre-
equilibrium” regime. The opposite case, cj �uj, corresponds
to highly efficient enzymes. In the diagram of Fig. 1, the
system is running unidirectionally around the cycle for most
of the time. We therefore call this case the “sequential” re-
gime.

Independently from u and c, two other limiting regimes
are connected with the amount of substrate x0 relative to the
Michaelis constant km. The system is in the “linear” regime
for x0�km and in the “saturation” regime for x0�km.

Next, we model the fluctuations �Ract�x0 , t� of the pro-

duction rate around the average value R̄act�x0�. The statistical
properties of these fluctuations are not obvious even if the
substrate molecule number x0 is artificially held constant. As
motivated in Appendix, Sec. 2, we approximate the produc-
tion process, in a coarse-grained view, as a Poisson process

with average event rate R̄act�x0�. Numerical simulations,
shown below, confirm that the probability distribution of the
waiting time between successive X-production events is in-
deed exponentially distributed with the expected characteris-
tic time constant. We further approximate the above Poisson
process by white Gaussian noise with a proper prefactor �Ap-
pendix, Sec. 3�. As a result of the above coarse-graining
procedure, we obtain

ẋ = R̄act�x0� + �R̄act�x0���t� , �5�

where ��t� is normalized white Gaussian noise with
���t���t���=��t− t��.

D. Stochastic differential equation of a CMC

We next combine the activation and deactivation pro-
cesses. The molecule numbers x�t� and x0�t� are now both
considered as variables. One obtains

ẋ = �R̄act�x0� − R̄dea�x�� + ��R̄act�x0��a�t� + �R̄dea�x��d�t�� .

�6�

Note that the deactivation rates depend on x, not x0. To
make further progress, we neglect the amount of substrates
bound within enzyme-substrate complexes so that x0=xt−x.
Additionally, we make the simplifying assumption that the
noise terms of the activation and deactivation processes fluc-
tuate statistically independent from each other. We can then
combine both terms, adding up the variances,

ẋ = �R̄act�xt − x� − R̄dea�x�� + ��R̄act�xt − x� + R̄dea�x����t� .

�7�

This has the general form of a stochastic differential equa-
tion with a multiplicative noise term

ẋ = f�x� + g�x���t� . �8�

Here,

f�x� = va
�xt − x�

�xt − x� + ka
− vd

x

x + kd
�9�

and

g�x� =�va
�xt − x�

�xt − x� + ka
+ vd

x

x + kd
, �10�

with obvious definitions of va ,vd ,ka ,kd. In the following, we
will extract statistical properties of this random process. Note
that the Ito interpretation has to be used whenever the true
random process �that is to be approximated by Gaussian
white noise� consists of a series of � peaks, such as in our
case of intrinsic, chemical noise �16,17�.
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We define a drift term

A�x� = f�x� �11�

and a diffusion term

B�x� =
1

2
g2�x� . �12�

The time-dependent PDF P�x , t� of the fluctuating vari-
able x�t� approximately satisfies the Fokker-Planck equation

�

�t
P�x,t� = −

�

�x
�A�x�P�x,t�� +

�2

�x2 �B�x�P�x,t�� . �13�

The stationary solution P�x� of this equation reads

P�x� =
N

B�x�
exp�	

xmin

x A�s�
B�s�

ds
 . �14�

Here, N is a normalization constant.

E. Symmetric CMC

With va, vd, ka, kd, and xt, there is obviously a large pa-
rameter space to explore. In this paper, we shall restrict our-
selves to just a few interesting cases. In a symmetric CMC,
the activation and deactivation processes have the same pa-
rameters, i.e., va=vd=v and ka=kd=k. We then have

f�x� = v� �xt − x�
�xt − x� + k

−
x

x + k

 �15�

and

g2�x� = v� �xt − x�
�xt − x� + k

+
x

x + k

 . �16�

Because the drift term A�s� and the diffusion term B�s�
are both proportional to v, it is clear that the maximum pro-
duction rate v will not affect the shape of the stationary PDF.
Consequently, k and xt are the only important parameters left.

1. Linear regime

The limit of a large Michaelis constant, k�xt, corre-
sponds to the linear regime of the two enzymatic conversion
reactions. In this case, the terms x and �xt−x� can be ne-
glected in Eqs. �9� and �10�. This leaves us with

f�x� = �vxt/k� − �2v/k�x �17�

and

g2�x� = �vxt/k� . �18�

A straightforward calculation of the PDF yields a Gaussian,
centered at x̄=

xt

2 , with a variance �x
2=

xt

4 ,

P�x� � exp�−
2�x−�xt/2��2

xt
� . �19�

The stochastic differential equation of a symmetric, linear
CMC corresponds to an Ornstein-Uhlenbeck process. Be-
sides the Gaussian PDF, we therefore expect an exponen-
tially decaying autocorrelation function

Cxx��� = ��x����x�0�� =  xt

4
�e−�2v/k��. �20�

The characteristic time constant is �c= k
2v .

2. Saturation regime

Next, we consider the opposite case of a small Michaelis
constant, i.e., k�xt, corresponding to the saturation regime.
We then have

f�x� = v�1 −
x

x + k

 → vk

x
for x � k �21�

and

g2�x� = v�1 +
x

x + k

 → 2v for x � k . �22�

The asymptotic drift and diffusion terms are A�x�= vk
x ,

B�x�=v, and A�s� /B�s�= k
x . Therefore,

	
xmin

x A�s�
B�s�

ds = k log�x/xmin� �23�

and

P�x� � ek log�x/xmin� � �x/xmin�k. �24�

Hence, we expect an increasing power-law tail for the
asymptotic PDF in the saturation regime of the symmetric
CMC. The exponent of the power law can be fractional and
is equal to the dimensionless Michaelis constant �Eq. �4��.
The above analytical approximations will break down when
x approaches the limits 0 or xt.

F. Asymmetric CMC

We now allow the activation parameters ka and va to dif-
fer from the corresponding deactivation parameters kd and
vd. Under saturation conditions �xt�ka, xt�kd� and in the
limit of large x, one obtains f�x�→ �va−vd� and g2�x�→ �va
+vd�, so that

A�s�
B�s�

→ 	 = 2
va − vd

va + vd
. �25�

This results in a stationary PDF with an exponential tail

P�x� � e	x. �26�

The decay constant 	 is positive for va
vd and negative for
va�vd.

III. RESULTS

A. Validation of Poisson statistics

We first investigate the statistics of the enzymatic activa-
tion process, with artificially fixed number x0 of substrate
molecules. For this purpose, we perform direct Monte Carlo
simulations in different parameter regimes. All rates and
times are presented in dimensionless numbers.
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The stochastic time evolution of the enzymatic activation
process is characterized by abrupt changes of the various
molecule numbers by integer amounts �Fig. 2�. A single en-
zyme molecule sometimes undergoes binding �b� and un-
binding �u� without conversion �c� to a product molecule.
The time interval �t between two successive conversion
events is fluctuating around the inverse of the average pro-
duction rate.

Since the production process involves a sequence of el-
ementary reaction steps, the distribution function P��t� of
this waiting time is not expected to be exponential for an
individual enzyme molecule. However, the superposition of
many such multistep processes running independently from
each other can closely mimic a Poisson process �Fig. 3�.

B. Monte Carlo simulation of the CMC

Next, we discuss the statistical properties of CMCs in
selected parameter regimes, as obtained by Monte Carlo
simulation of the reaction dynamics. We shall mainly focus
on CMCs with symmetric parameters for the activation and

deactivation processes. The total number of substrate mol-
ecules xt was 200 in all cases. Our analytic theory was based
on the assumption that the amount of substrate bound in
complexes is small compared to xt. We have therefore chosen
a small number of enzyme molecules, at=dt=10. The
�rounded� parameters for all the following simulations are
listed in Table I. We have also included a saturation param-
eter �SP�, defined as SP=xt /km, and an equilibrium param-
eter �EP�, defined as EP=c /u. For instance, SP�1, EP�1
would indicate that the system is in the saturated, pre-
equilibrium regime.

1. Symmetric CMC in the linear and weakly saturated regimes

In the linear regime, we expect for the substrate X a
Gaussian distribution, peaked at x̄=xt /2 and with variance
xt /4. The autocorrelation of the random variable x�t� should
decay exponentially with time constant �c=k /2v. The agree-
ment of the Monte Carlo results with this analytic theory is
excellent �see Fig. 4�. In the weakly saturated regime, we
find a decrease of the average molecule number and a con-
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FIG. 2. �Color online� Monte Carlo simulation of enzymatic
conversion. Molecule numbers of the enzyme-substrate complex
�solid� and of the activated product �dashed� in the case of only one
enzyme molecule. Parameters: b=u=c=1.0, et=1. Vertical arrows
denote conversion �c�, binding �b�, and unbinding �u� processes. �t
is the time interval between two successive conversion events.
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FIG. 3. �Color online� Waiting time distributions. Simulated
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molecule. Case �b�: Ten independent enzyme molecules. Inset
shows the same data in a semilogarithmic plot.

TABLE I. Parameter space explored in Monte Carlo
simulations.

Fig. Subf. b u c Asym. km SP EP

4,5 b 5·10−4 0.1 10 2·104 0.01 0.01

c 5 ·10−4 10 0.1 2 ·104 0.01 100

d 0.5 0.1 10 20 10 0.01

e 0.5 10 0.1 20 10 100

6 a 1 0.1 2 2.1 95 0.05

b 1 0.1 1.5 1.6 125 0.07

c 1 0.1 1 1.1 180 0.1

d 1 0.1 0.4 0.5 400 0.25

e 1 0.1 0.1 0.2 1000 1

7 a 1 0.1 1 c1=1.5

b 1 0.1 1 c1=1.25

c 1 0.1 1 c1=1.125

d 1 0.1 1 1.1 180 0.1
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FIG. 4. �Color online� X distributions in the ��b� and �c�� linear
regime and in the ��d� and �e�� weakly saturated regime. Solid line
�a� is the analytical solution to the linear case. Inset: Normalized
autocorrelation function for linear case �symbols� with analytical
solution �solid line�. For parameters, see Table I.
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siderable broadening of the distribution, while the shape of
the PDF remains approximately Gaussian. The distributions
do not change dramatically when the parameter regime is
changed from sequential to pre-equilibrium conditions as
long as the ratio of enzyme to substrate molecules is small
�see �29��.

The Monte Carlo simulations also yield the distributions
of the enzyme molecule number E=a=d �see Fig. 5�. The
effect of sequential or pre-equilibrium conditions is almost
invisible for the particular parameters chosen.

2. Symmetric CMC in the saturation regime

Next, we turn to CMCs operating within the saturation
regime, which corresponds to the hypersensitive “switchlike”
mode of the cycle. In the simulations, km was indirectly
changed via the conversion rate c. While small conversion
rates result in a Gaussian PDF, the distributions become ex-
tremely asymmetric as the system runs into the saturation
regime �Fig. 6�. The double-logarithmic plot reveals a
power-law wing at the “left” side of the peak. The positive
exponent of the power-law tail is fractional in the general
case. It is determined by the Michaelis constant, as expected
from the analytical theory above. For a very small Michaelis
constant, one obtains an almost flat distribution, which can
cover several decades of concentration. Of course, the PDF

has sharp cutoffs at the maximum particle number x=xt and
close to x=0 �not shown�.

This remarkable result demonstrates that the notion of de-
terministic biomolecular networks, with well-defined aver-
age levels of concentration and negligibly small Gaussian
fluctuations, dramatically fails in certain parameter ranges.
Concentration fluctuations with a power-law wing are scale
free and therefore arbitrarily large deviations from the aver-
age value occur with nonnegligible probability.

3. Asymmetric CMC in the saturation regime

From a systems biology point of view, an interesting
question is the sensitivity of the CMC with respect to its
parameter values. In particular, we investigated the effects of
tuning the system slightly away from the completely sym-
metric parameter settings considered so far. The most dra-
matic effects are expected for a CMC in the hypersensitive
saturation regime.

For this purpose, we start again with the parameters of the
symmetric saturated CMC, which produced a PDF with a
power-law tail of slope 1.1 �compare Fig. 6�e��. Now, how-
ever, we fine tune the conversion rate c1 of the activation
reaction, while leaving the corresponding parameter c2 at its
former value 1.

As expected, if c2�c1, the PDF of X0 is peaked around a
small average concentration, while X has a high average con-
centration �Fig. 7�. The average concentrations are drasti-
cally different even for rather similar c parameters due to the
hypersensitive response of the saturated CMC. We find PDFs
with exponential tails for all cases, except in a very narrow
range around perfect parametric symmetry. This is in agree-
ment with the analytical theory presented in Sec. II F. In the
narrow symmetrical regime, the two PDFs collapse to one.
They are mirror symmetric with respect to the average mol-
ecule number in this case.

This behavior somewhat resembles critical phenomena in
physics, where fluctuations of arbitrary size occur when a
control parameter is precisely tuned to a critical value. In
biological systems, it would be extremely improbable to find
a CMC where all the microscopic parameters of the activa-
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parameters, see Table I.
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FIG. 7. �Color online� Collapse of exponential distributions at
the critical point of parametric symmetry. Distributions of X0

�dashed lines� and X �solid lines�. In cases �a�–�d�, the conversion
rate of the activating reaction only has been gradually increased.
The left wing of �d� corresponds to Fig. 6�c� when plotted double
logarithmically. For parameters, see Table I.
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tion and deactivation reaction are precisely identical. How-
ever, Eqs. �9� and �10� show that effective dynamical sym-
metry can be achieved under the much weaker conditions
va�vd and ka�kd. In terms of the microscopic parameters,
this translates into c1at�c2dt and

c1+u1

b1
�

c2+u2

b2
.

In order to demonstrate that the dynamics is only con-
trolled by the conversion velocities, the Michaelis constants,
and the total amount of substrate xt, we have performed an-
other Monte Carlo simulation for a CMC with xt=200 and
the microscopically nonsymmetric parameters at=50, b1
=1 , u1=0.1, c1=1 for the activation reaction and dt
=10, b2=10, u2=6 , c2=5 for the deactivation reaction.
These parameters are nevertheless symmetrical on the
coarse-grained level of k and v. The simulation results in-
deed show a power-law behavior, thus confirming the ana-
lytical prediction �see Fig. 8�. Note that the total amount of
enzymes at and dt can be easily varied in a living cell, for
example, by changing the expression levels or the activity of
the enzymes. This offers a way to tune the CMC through the
critical point. If, for instance, we detune at away from the
critical value at

�crit�=50 by �10%, we find that one of the
distributions P�X� and P�X0� is loosing its power-law behav-
ior. Yet, the �respective� complementary form of substrate
still shows a very steep power-law tail under these conditions
of disturbed symmetry.

IV. DISCUSSION AND OUTLOOK

The statistical properties of concentration fluctuations
produced by CMCs reveal an extremely rich behavior. A
variety of qualitatively different probability distributions has
been found for the molecule numbers of the activated sub-
strate, depending on the parameter settings. A particularly
remarkable result for symmetric CMCs operated in the satu-
ration regime was the emergence of an extremely broad PDF
with a power-law tail. These fluctuations are driven by
purely intrinsic noise, originating from the stochastic arrival
times of the molecular reaction events.

We note that in biological systems, there are additional
extrinsic sources of noise as well. For example, we have
considered the total number of enzyme molecules, at and dt,
as being strictly constant in this paper. In biological systems,
the enzymes are themselves subject to production and con-
sumption processes and will therefore undergo concentration
fluctuations. When these enzymes serve a CMC in the satu-
ration regime, the steady-state activation level x /x0 of the
substrate will depend hypersensitively on the momentary ra-
tio of enzyme concentrations at /dt. Small �and sufficiently
slow� fluctuations of the enzyme concentrations will there-
fore be amplified, leading to an additional extrinsic broaden-
ing of the PDF of x�t�.

At first glance, it seems that such extreme concentration
fluctuations would compromise the function of biochemical
networks �18,19�. However, recent reports have suggested
that large biochemical fluctuations can also be beneficial for
organisms, ranging from bacteria to humans �20–23�. In a
recent review article �24�, Losick et al. summarized a num-
ber of studies showing that certain cells choose one or an-

other pathway of differentiation stochastically without regard
to environment or history.

Another example of stochastic signal processing is pro-
vided by the well-understood bacterial chemotaxis network.
The flagellar motor of the bacterium is normally rotating in
the counterclockwise �CCW� direction, but shows stochastic
intervals of clockwise �CW� rotation. This gives rise to dis-
tinct phases of straight swimming motion of the bacterium,
separated by random tumbling phases. Cell-membrane recep-
tors detect the concentration of attractant molecules in the
surrounding medium of the bacterium. Over several interme-
diate steps, the activation level of the receptors affects the
distribution of CCW interval length and, thereby, the run
length distribution of the bacterium’s random walk in the
medium. A statistical analysis of the CCW intervals revealed
a power-law distribution �25�, which has been related to mo-
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FIG. 8. �Color online� Tuning the CMC through the critical
point by changing the enzyme concentration at. The simulated
CMC has asymmetric rate constants, but becomes symmetric with
respect to the effective coarse-grained parameters km and vm for
at=50. Parts �a�–�c� correspond to at=45, 50, and 55. Shown are
double-logarithmic distributions of the activated �solid lines� and
deactivated �dashed lines� substrates. For parameters, see text.
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lecular noise in the reaction network �26�. Interestingly, such
random walks with power-law-distributed run lengths �Levy
flights� are known to generate trajectories which are the op-
timum strategies to search efficiently for randomly located
objects �27�. This example shows how the shaping of mo-
lecular noise and the modulation of the noise parameters in
response to environmental stimuli can be used by cells for
complex tasks such as foraging behavior.

We note that similar ideas of stochastic signal processing
have recently emerged in the field of neuroscience �28�. In
the new concept of “reservoir computing,” a network of �ran-
domly� connected neurons generates a so-called transient
state dynamics, where the trajectory of the system state is
temporally fluctuating between various unstable attractors.
This autonomously active “reservoir” network is only
weakly coupled to the “input” and “output” units. As simu-
lations have shown, the mapping of low-dimensional input
signals onto the high-dimensional state space of the reservoir
network can be advantageous for the signal processing.

Finally, in this report, we have discussed the stationary
behavior of a single CMC in which the total number of mol-
ecules is fixed. In living cells, however, multiple CMCs are
connected in linear and branched signaling networks. More-
over, the total number of molecules fluctuates as new pro-
teins are expressed or old proteins are recycled. If already a
single CMC under stationary conditions gives rise to such
highly complex, bizarre, and nondeterministic behavior as
described in this paper, we argue that concentration fluctua-
tions in living cells are even less predictable by classical
mass-action theory.
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APPENDIX

1. Average production rates

We consider an enzymatic conversion reaction of the gen-
eral form

X + E�
u

b

Y→
c

Z + E . �A1�

Using mass-action rate theory, we obtain for the temporal
change of the concentration y�t� of the enzyme-substrate
complex

ẏ = bxe − uy − cy . �A2�

We make the simplifying approximations that x�t� is held
constant. After a certain relaxation time, the system will
reach a steady state, in which also y�t�=const. The condition
ẏ=0 then leads to

y = xe
b

u + c
. �A3�

The expression b
u+c = 1

km
is defined as the inverse Michaelis

constant, so that y= xe
km

. Since the enzyme can either be free

or bound in the complex, et=e+y, one obtains y=
x�et−y�

km
.

Solving for y yields

y = et
x

x + km
. �A4�

For the quantity of interest, the steady-state generation rate
ż=cy of the product, we finally obtain

ż = �cet�
x

x + km
= vm

x

x + km
. �A5�

2. Enzymatic conversion as an effective Poisson process

In general, an individual A-enzyme molecule can undergo
a series of binding/unbinding events with the �nonexhaust-
ible� substrate X0 before the substrate is finally converted
into a new X molecule. Therefore, even though each elemen-
tary reaction step, i.e., binding, unbinding, and conversion, is
a Poisson process, the same is not true for the multistep
production process �30�.

However, many individual A-enzyme molecules, dis-
persed throughout the volume of the container, are simulta-
neously active, with independent temporal statistics. Our nu-
merical simulations show that the superposition of many
independent non-Poisson processes can resemble an effective
Poisson process very closely. As expected, the characteristic
time constant of this effective Poisson process is given by the

inverse of the average total production rate R̄act�x0�.
In our CMC system, the substrate molecule number x0

and therefore R̄act�x0� are not constant. The resulting Poisson
process is therefore not stationary but has a time-varying
rate. We conclude that in systems with many independent
enzyme molecules, the overall conversion process can be
approximated by an inhomogeneous Poisson process.

3. Poisson process as white Gaussian noise

Assume now a Poisson process with constant average

event rate k̄= R̄act�x0�. We express the temporal change of the
number x�t� of product molecules in the form

ẋ = k̄ + �k�t� . �A6�

For later convenience, we want to approximate the fluctua-
tion term by Gaussian white noise

��k�t��k�t��� = ��t − t�� . �A7�

What is the proper choice for the prefactor  so that the
major statistical properties of a Poisson process are consis-
tently reproduced?

To answer this question, we consider the number n�T� of
X molecules which are produced during an interval of length
T,

n�T� = 	
0

T

ẋ�t�dt = k̄T + 	
0

T

�k�t�dt = n̄ + �n . �A8�

In the ensemble average, a Poisson process must fulfill
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���n�2� = n̄ �A9�

or

�	
0

T

�k�t�dt�2� = k̄T . �A10�

The left side of the above equation can be reduced to T.

Using Eq. �A7�, we therefore obtain = k̄ and therefore

��k�t��k�t��� = k̄��t − t�� . �A11�

Dividing this equation by k̄ leads to

��k�t�
�k̄

�k�t��
�k̄

� = ��t − t�� . �A12�

We now define a new stochastic process by

��t� =
�k�t�
�k̄

. �A13�

It is also normally distributed, but shows the desired property
of � autocorrelation with unit strength

���t���t��� = ��t − t�� . �A14�

We conclude that a proper description of a Poisson process
by a stochastic differential equation should have the form

ẋ = k̄ + �k̄��t� . �A15�

�1� C. Furusawa et al., Biophysics �Engl. Transl.� 1, 25 �2005�.
�2� H. Kitano, Science 295, 1662 �2002�.
�3� B. N. Kholodenko, Nat. Rev. Mol. Cell Biol. 7, 165 �2006�.
�4� L. H. Hartwell et al., Nature �London� 402, C47 �1999�.
�5� D. E. Koshland, Jr., Science 280, 852 �1998�.
�6� E. Shacter et al., J. Biol. Chem. 259, 12252 �1984�.
�7� E. G. Krebs, Curr. Top. Cell. Regul. 18, 401 �1981�.
�8� E. R. Stadtman et al., Proc. Natl. Acad. Sci. U.S.A. 74, 2761

�1977�.
�9� A. Goldbeter et al., Proc. Natl. Acad. Sci. U.S.A. 78, 6840

�1981�.
�10� J. C. Nacher et al., Phys. Lett. A 360, 174 �2006�.
�11� P. B. Warren et al., J. Chem. Phys. 125, 144904 �2006�.
�12� H. Qian et al., PNAS Early Edition 99, 10376 �2002�.
�13� J. Levine et al., Biophys. J. 92, 4473 �2007�.
�14� D. T. Gillespie, J. Chem. Phys. 113, 297 �2000�.
�15� D. T. Gillespie, J. Phys. Chem. 81, 2340 �1977�.
�16� H. Risken, The Fokker-Planck Equation �Springer, Berlin,

1984�.
�17� N. G. van Kampen, Stochastic Processes in Physics and

Chemistry �Elsevier, Amsterdam, 1992�.
�18� M. Thattai et al., Proc. Natl. Acad. Sci. U.S.A. 98, 8614

�2001�.
�19� M. Thattai et al., Biophys. J. 82, 2943 �2002�.
�20� D. W. Austin et al., Nature �London� 439, 608 �2006�.
�21� C. V. Rao et al., Nature �London� 420, 231 �2002�.
�22� J. Hasty et al., Proc. Natl. Acad. Sci. U.S.A. 97, 2075 �2000�.
�23� J. Paulsson et al., Proc. Natl. Acad. Sci. U.S.A. 97, 7148

�2000�.

�24� R. Losick et al., Science 320, 65 �2008�.
�25� E. Korobkova et al., Nature �London� 428, 574 �2004�.
�26� Y. Tu and G. Grinstein, Phys. Rev. Lett. 94, 208101 �2005�.
�27� G. M. Viswanathan, Nature �London� 401, 911 �1999�.
�28� C. Gros, Cogn. Comput. 1, 77 �2009�.
�29� Note that in Sec. II E, we have neglected the amount of sub-

strate which is bound in complexes. In order to refine the
theory, let us define a new dynamic variable �=x+dx �the
complementary variable �=x0+ax0 is unnecessary since �
=xt−��. This variable � defines the macrostate of the system
in our coarse-grained view. It is changed only by activation or
deactivation processes. On the other hand, binding and unbind-
ing processes only affect the microstate of the system. The
latter is defined by the numbers dx and ax0, each of which can
vary between 0 and the respective number of enzyme mol-
ecules. Thus, each macro state � can be subdivided into sev-
eral microstates �dx ,ax0�. The fluctuations of our variable of
interest, x�t�, are determined by changes of the macro- and of
the microstate. In the pre-equilibrium regime, for each momen-
tary macrostate �, we expect that equilibrium distributions
Peq�dx ��� �and Peq�ax0 ���� of microstates are building up.
The probability of having x activated substrate molecules is
under such conditions given by P�x�=���xP���Peq�dx=�
−x ���.

�30� For a simple example, consider a sequence of one binding and
one conversion step. The PDF of each elementary Poisson step
is exponential. The PDF of the sequence is a convolution of
two exponential functions, i.e., a gamma distribution with
shape parameter k=2.
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